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DYNAMICS O F  A ROTATING CYLINDRICAL SPACE STATION 

SUMMARY 
Equations describing the reaction of  a space vehicle 
t o  rotating machinery and to mass mot ion  inside the 
vehicle are formrjlated. These equations include a 
component that has been neglected in most earlier 
studies, ;.e., the angular impulse introduced by the 
moving mass. The dynamics of a cylindrical space 
station rotating around its major axis once every IO 
seconds are evaluated numerically. The long cylinder 
provides the large distance between the axis of ro- 
tation and the crew compartment needed t o  generate 
comfortable artificial gravity. But the rotating cylin- 
der is known t o  have l i t t le dynamic stability around 
its longitudinal axis. Nevertheless, the stability char- 
acteristics of this configuration are found t o  be 
acceptable provided there is as little as 0.2% asym- 
metry between the major and intermediate moments 
of inertia. Detailed investigations were performed o n  
an analog computer. These show the effect of path 
and t iming o n  the magnitude of the disturbance 
caused by a mass relocation. Also analyzed in some 
detail are ways t o  minimize rol l ,  either by corrective 
mot ion of the astronauts or by a simple control  sys- 
tem that uses the gyroscopic torque generated by 
rotating the body-f ixed axis of a f lywheel. 

SECTION I. INTRODUCTION 

The environment necessary for the life support of  
astronauts during extended space flights will prob- 
ably have to include artificial gravity. During periods 
of coasting, this will be generated by continuous 
rotation of the space station around an axis that is 
sufficiently remote f rom the crew compartment t o  
exclude extreme variations in the  centrifugal forces 
w i t h  in the  compartment. 

O u r  investigation will be limited t o  a station of  
cylindrical shape, since this is the geometry most 
likely t o  be used for early flights of long duration. 
As a further qualification, since the rotating cylinder 
is highly stable around i ts  two axes of  large moment 
of inertia, only the requirements for stability around 
the third axis, ;.e., the  longitudinal axis, will be 
examined. 

SECTION II. ANALYSIS 

A. The Undisturbed System 

In the absence of external torques, the angular im- 
pulse of  the system remains constant. Let us assume 
that the angular impulse is aligned w i th  the Z axis of 
the space-fixed reference coordinate system X,  Y ,  Z 
(Figure 1). Using the transformation matrix f rom the 
reference coordinate system to the  body-fixed co- 
ordinate system expressed in Euler angles +, 0, +, w e  
get the components of the angular impulse in the 
body-fixed coordinate system x, y, z (Figure I):* 

"u, 
+, 8 ,  + as shown are positive angles. 

Figure 1 - Euler- Angles, Transformation from Reference 
to Body-Fixed Coordinate System 

'This approach eliminates the drift problems that occur when 
Euler's moment equation is used for the analog simulation 
of torque-free rotational motion. Cf. Whittaker, E. T., A Trea- 
tise on the Analytical Dynamics of Particles and'Rigid Bodies, 
New York, Dover (19441, pg. 144. 



COS + COS e 
cos IF, sin 8 sin + 

cos +sin e cos + + sin + sin C#I 

sin + cos 8 

sin +sin e sin + 

sin + sin 8 cos + 
- cos + sin C#I 

- sin e 

-sin$cos+ + C O S $ C O S +  

cos 0 cos + 

D = 

or 
H,= -H sin 8 
H,= H cos 8 sin 4 
H,= H cos e COS + 

I, - I,, - l L Z I  

I, j 
- I zy  I y  - Iyzi 
- 1x2 - I,; 

The angular impulse is related to the angular ve- 

(3) 

locity by the vector equation 
- - -  
H= 1 . 0  

D1 = 

D ~ =  

N 

The inertia tensor I is given by a matrix 

I ,  - Hsin 0 
- I ry  
- I x z  HcosOcos+ lz 

I ,  - I,, - H sin 0 

H cos 6' sin + - I , ,  

-I,, I, Hcosesin + 
- iXz - I,, H cos e COS 

If there is  no mass motion inside the space station, 
the components of the tensor are constant in the 
body-fixed coordinate system. Calling the compo- 
nents of the angular velocity in the body-fixed CO- 

ordinate system P, q, r and using Equations ( 2 ) ,  the 
vector equation (3) can be written in components 

H, = I,p - l,,q - l rzr = - H sin e 
H, = - IJYp + lyq - lYzr = H cos 6' sin + (5) 
H,=- I,,p - Iyzq + Izr= H cos 6' cos+ 

Using determinants, Equations (5) are solved for p, 
q, and r 

**Cf. Fifer, Stanley, Analogue Computation, Vol. IV, New York, 
McCraw-Hill (1961), pg. 1091. 

~ _ .  ~ 

We now express the angular velocities in terms of 
gimbal angles and rates: 

. .  
p=+ - +sin 0. 

r=-  e sin + + 4 cos e cos C#I 
q=f dcqs + + q cos e sin + (7) 

Or, solving for i, e', and i, we get 

g=p+$  sine 
8=q cos 9 - rsin + 

$ cos e=q sin + + r cos + 
Finally, introducing (6) into (8), we get 

(8) 

D c&= DI f (D2 sin + + D3 cos+) tan 0 
De= 02cos+-D:<sin+ (9) 

D$cose= D,sin++ D:3cos+ 

Equations (9) describe the attitude of a body with an 
angular impulse. This system of first-order differen- 
tial equations can be simplified if we choose a par- 
ticular body-fixed coordinate system that is aligned 
with the principal axes b, 7, [. The inertia tensorTcan 
then be expressed by a diagonal matrix: 

and equations (5) simplify to 

I,= - H sin 0 
a l l t l  I = HcosOsin.+ (11) 

0, I, = H COS O COS + 
in our new notation, 

6 = a,, cos*+ - or sin .k 
i = 0, + sin o (12) 

Rewriting (8) 

.i. cos o =R, sin + + a, cos@ 

Finally, we get 

cos 0 sin 2+ 

4n2+ I cos2+) 

1, 

1 cos2.9 &= H [ -r+ (y +-,,)I sin o 

(1 3a) 
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or, using 

cos2 @ = - f + C O S 2 @  2 

1 1  sin2 @ = - - - COS 2 @ 
2 2  

we get 

(1 3c) 
For rotational symmetry (I, = IC)  

O, &, .i. are constants 
and 

QE= constant 
a,,=== A sin @ 
Q r =  A COS @ 

These equations describe the nutational motion of a 
cylinder of perfect rotational symmetry. The length 
axis is  moving on a circular cone with constant angu- 
lar and roll velocity- a well-known phenomenon. 

Let us now consider the case of a body wifh near 
rotational symmetry around the length axis and sma'll 
angle O: 

I c - l , , = A I  < I t  
@ < a  

and 

H +.=: - 
It 

Combining the first and the,derivative of the sec- 
ond of these equations, we eliminate 0 and get 

;.e., the equation for the mathematical pendulum. 
For AI positive the rotation around the l-axis is stable, 
and for A I  negative the rotation around the v-axis is 
stable, the period T increasing with decreasing AI. 

B. Effect of Mass Motion Within the System 

Next, how does a change in the mass distribution 
inside the station affect the motion of the station? 
The total angular impulse does not change because 
the mass motion is a result of internal forces. Nor 
does the center of mass move. But the origin of the 
body-fixed coordinate system does move and the 
inertia tensor changes. In addition, we must remem- 
ber that the angular momentum varies with location. 
A mass close to the center of rotation has less angular 
momentum than a mass located farther out. Thus a 
mass that moves away from the center of rotation is  
accelerated, thereby slowing the part of the station it 
moves to. (This is  equivalent to saying that a moving 
mass in a rotating system experiences the Coriolis 
force, which causes a change in the angular velocity 
of the station i f  it acts at an arm. See Figure 2.) 

Figure 2 -Coriolis Forces Resulting from Mass  Motion in 
Rotating Space Station 

Let us assume that a mass m moves from E, to p 
inside the station. Although the position vector of 
the center of mass in the space-fixed coordinate sys- 
tem does not change, the location of the center of 
mass in the body-fixed coordinate system does 
move. Initially, we have 

Z m, pi + m F,, = 0 
m i # m  

With m moved to p the center of gravity has moved 
to E, given by 

M .  R = Z m i , % + m p  
m i # m  

- m  
M R=-((p- ii,) 

where M is the total mass of the  system. 

(1 5) 
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The angular impulse n, which remains unchanged, 
is given by 

R = Z m m r F x X 6  
all m 

with E the position vector of mi and Vi the velocity of 
mi (relative to the center of mass) measured in space- 
fixed coordinates. 

We write the equation for the angular impulse in 
body-fixed coordinates: 

Z = F - i ?  

,vi= ,d,(Fi)=$+Lx 6 

= 6 - F + + x ( p i - E )  
- 

i 7 = ~  mi (pi - i i) x (6 - R )  + 
mi (i;i - K) x 5 x (p - K) 

Using the formula Z x (6 x S) =6 (Z.a - F ( Z - & ,  
we get 

- - -  
H=Zm,(Fi - R )  x ;i - Zmi(Tji - R )  x R - 

+ ~ Z m i ( p - R ) ' - x m i ( i s - - - ) . [ 2 . ( ~ ~ - - ) ]  (16) 

The first two terms show the effect of the mass mo- 
tion; the last two terms, which depend only on the 
mass distribution, must correspond with Equation 
(3). Evaluating the first two terms further, we note, 
that because $=O for a l l  mi except the moving 
mass m, - 

Zmi(~ i - i ? )  X$i=m(F-RR) x f 
and, according to the definition of E 

- 
Zmi(pi - R)= 0 

Therefore the second term equals zero: 
- -  

Zmi(pi- R )  X R=O 

The equation for the angular impulse is  now 

R=m(F-i?) x++TE (1 7) 

N -  

The x component of I . R (see Equation 16) is given 
by 

( / . ~ ) , = p  Zml[(xi - XI2 + (yi - VI2 +(zi - - P I  
N- 

- p Z m i  (Xi -X)? 

- q Zm,  (xi --XI ( y i  - Y )  

+ (z4 - Z)'l 
- q Z m, (xi -XI ( y i  - Y )  

- r Z m 6  (xi - X) (zi -Z) 
= p  Zm, [ ( y i  - 

- r Em, (xi - X )  (zi -Z) 

and the other components o f 7 5  have the.corre- 
sponding form. W z  use these equations to evaluate 
the inertia tensor I: 

and (see Equation 15) 

I ,  = I,, , + m ( y 2  -y,2) +m (z2 - 2;) 

(18a) 
m2 m2 
M M 

- - - ~ y - y , ) 2 - - - ( z - 2 0 )  

where I=, , is the x-component of I before the mass m 
is moved from p to p,. 
Since the body axes are the principal axes for p=po, 
we get 

m2 
M 

I,, = m ( x y  - x, yo)  - - (x -xJ ( y  - yo)  (18b) 

Similarly, we get 

I ,  = I ; , ,+m(x2-xX,")+m(y2-y,2) 

m2 
M 

I,, = m (xz - x, z,) - - (x - x,) (z - zo) (1 8e) 

where I V , ,  and I , ,  are quantities corresponding to 

Equations (17) and (18) describe the dynamics of a 
rotating space station with no external torques. 

For our numerical evaluation of Equations (IS), 
(17), and (18), we have used a model of a space sta- 
tion similar to one proposed in a study conducted by 
the Propulsion and Vehicle Engineering Laboratory, 
Marshall Space Flight Center, at the request of the 
MSFC Future Projects Office (Figure 3). The station 
is nearly cylindrical and rotates around its axis of 
maximum moment of inertia. The rate of rotation, 8, 
is 0.628 rad/sec and the crew compartment extends 
12 to 18 meters from the center of rotation. The re- 

I ,  0. 

4 



S-IV B \ 

Figure 3 -Model  of Rotating Space Station 

sulting artificial gravity, Q 2 - r ,  ranges from 0.48g to 
0.72g. Three astronauts weighing 90 kilograms each 
are free to move about in this area. The maximum 
moment of inertia, I,, is 6,000,000 kg m’. The mo- 
ment of inertia around the length axis, IJ, is 112,000 
kg m2. 

Several different mass .motions were studied. Our 
study showed that a station with rotational symmetry 
around the length axis responds to mass disturbances 
with large roll motions. This is  demonstrated on Fig- 
ure 4, which shows the results of a digital evaluation. 
A continuous roll motion is  produced in response 
to a mass motion from x=15m, z=O to x=15m, 
z=1.8m. The deflection in 6’ i s  negligible. (The de- 
flection in e consists of a component proportional 
to cos + and, according to Equation (I~c), superim- 
posed on this a component proportional to 4. The 

16 

14 

12 

YI 10 

n 

z 

Z 
4 - 
2 8  

- 
‘ 6  

4 

2 

component proportional to cos + is caused by the 
angle between the principal axis ,$ and the body axis 
x.) The mass motion converts the z-axis into an axis 
of intermediate moment of inertia, the rotation 
around this axis is  unstable, and because the motion 
(the distance of m from the center of rotation in- 
creases) introduces a small positive initial roll ve- 
locity, the roll motion is  continuous. 

But even as little as 0.2O/0 asymmetry i s  sufficient 
(for the model used in our numerical evaluation) to 
insure that the roll deflection in response to a single 
motion is  limited to less than I O 0 .  However, because 
of the absence of damping, whether or not a new 
mass motion will increase or decrease an existing 
oscillation depends on the timing of the new mass 
motion. (See the discussion of cancellation of roll 
by motion of the astronauts, page34.) 

.””\ 

--.0020 
0 
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0 100 200 300 400 500 600 700 ‘800 900 loo0 

TIME IN SECONDS 

Figure 4a - @ Response of Station 

n 
2 0 0  rJu3 400 

I TIME i jECONDS 

r 

, 

Figure 4b - B ResDonse of Station - 
to Mass Motion from x = 15m, z = 0 to x = 15m, z = 1.8m 

(Given Rotational Symmetry Around Length Axis) 
to Mass Motion from x = 15m, z = 0 to x = 15m, z = 1.8m 

(Given Rotational Symmetry Around Length Axis) 
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Another disturbance that can be considered is the 
effect of rotating machinery (generators, pumps, etc.) 
on board the station. We modify Equation (17) to 
include the effect of rotating machinery with body- 
fixed axes: 

(1 9) 

where 6 is the angular impulse of the rotating 
machinery. Written in components, Equation (19) 
becomes 

d- - R=m(p--R) X $+ 1.a + h 

- Hsin 8=hx + p I ,  - q I,, - r I ,  + m ~ ( y  - y ) i  - (z - Z)fl 

+ m [(z - Z) i - (x - XI ; ]  

+ m [(x - X )  y - (y - Y ) ~ I  

We see from these equations that flywheels can en- 
force the correct attitude in the steady state, in spite 
of mass displacements. 

In the steady state, with p ,  q, X, i, and ;=O, + and 
6 can be reduced to zero if 

H cos 8 sin = h, - p I,!, + q I ,  - r I,, 

H cos 6 cos@== h, -p I,, - q I,, +.r I ,  

h, = r I ,  

h ,  = r I,, 

We can determine the required angular impulses to 
do this for the maximum possible values of I,, and 

/,,=mxz=270kg. 18m * 1.8m=8,750kgm2 

lyr= myz = 270kg . 1.27m 1 1.27m = 435kg m2 

Because the roll deflection is  considerably larger 
than the pitch deflection, it is  more important to re- 
duce roll. Fortunately, this requires a twenty times 
smaller angular impulse. Moreover, because a de- 
flection in the roll orientation i s  less disturbing to 
the astronauts than a roll oscillation, only methods of 
limiting roll oscillation were studied. Two methods 
were studied in detail: controlled motion of the 
astronauts and automatic control by flywheels. 

To simplify our analysis of the effect of rotating 
machinery with body-fixed axes, we shall assume 
that the body-fixed axes are the principal axes and 
that the astronauts are at rest. Equations (19) then 
become 

- H sin 8=h,+pI, 

H cos 8 sin +=h,+qI, 

H cos 8 cos +=h,+rI, 

The magnitude of h, that can be tolerated is de- 
termined by the transients it introduces into roll 
during starting and stopping. 

lyz: 

We can estimate the initial roll velocity caused by 
a fast start (assuming that 8=0 initially) from 

I X P  + hx=O= h s  + 440 
If we limit the roll deflection to a maximum of 0.1 
rad, the roll oscillation wil l be approximately sinu- 
soidal, with the relation between the' maximum 
angular velocity and the angular deflection given by 

It follows that 

lhxl  < 1;2s * 0.1 rad = 1850kg m2 sec-' 

This angular impulse causes a deflection in B after 
the roll oscillation is damped out: 

1850 6 = - =-- 
H 6,000,000 . 0.628 

= - 0.5 . rad 

But, because of their small size, 6' and 8 can be neg- 
lected, and we get for the components of a: 

q=$ cos 8 sin 4 
Using these expressions, we get 

r=$ cos 8 cos + 

h,= ( H  - $ I,) COS8COS+ 
or 

H-hh, 
1, 

Thus, because H is very large, the change in 4 re- 
sulting from rotating machinery with its axis parallel 
to z can be neglected. 

Finally, for h,, we get 

h, z H 1 - 2 cos 8 sin 4 ( :,> 
Hence an angular impulse h, causes a steady-state 
deflection in +. Imposing the same limit on the 
steady-state deflection as we did on the roll oscil- 
lation, we get 

h,<H 1 - 1  -0.1 :,> 
< 6,000,000 . 0.002 . 0.628.0.1 

< 750 kg m2 sec-I 

In sum, then, rotating machinery interferes least 
with the dynamics of the rotating station when its 
axis is aligned with the z-axis of the station. 

6 



SECTION I l l .  NUMERICAL EVALUATION 

A. The Analog Computer Program 

To study the behavior of Equation (19), we pro- 
grammed it on an analog computer. Mechanization 
in the most general manner had to include the fol- 
lowing: the variation in the nine components of the 
inertia tensor resulting from changes in the mass 
dist.ribution, the angular impulse of the moving mass 
inside the station, and the relation between the com- 
ponents of the angular impulse (in the body-fixed 
coordinate system) and the Euler angle rates. Seven 
multipliers, with 35 products, and two resolvers were 
required. 

By various linearizations and approximations, this 
requirement was reduced to four multipliers, with 11 
products. The largest error (7% in the worst case) 
was introduced into the factor of + by the replace- 
ment of 1 - lu / l z  with 1 - lu ,o / l~ ,o .  

0 0  0 0  0 0  p p  - cos 0 1  

- l 0 i  - 10; Sp,-., 100 10 4 

- - 
.loo0 

IO@! ', ': 

The following simplifying assumptions were made: 
that m << M, that the position of m in the undis- 
turbed system is at yo, z,,=O, that changes in I,, I,,, I ,  
resulting from mass displacements can be neglected, 
and that small angle approximations wil l have no 
significant effect on the results. We therefore get 

I,, z mxy; I,, s myz; I ,  - - mxz 

* H  
p z ;  - r j e ; q  z e + q+; rz  +z - 

12 

. .  

+ m -- H xz + m ( iz  - ;y) - h, 

1, 

+ m ( x i  - z;) - h, (20) 

The analog computer program is shown in Figure 5. 

4 

Figure 5 - Basic Analog Computer Program 
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The effect of a mass displacement depends on the 
path and on the schedule of the displacement. Fig- 
ure 6 shows the response of the station to the mo- 
tion of three astronauts (3.90 kg=270kg) from 
(12m, 0, 0) to (18m, 0, 1.8m) along three different 
paths: 
Path 1. From (12m, 0, 0) to (18m, 0, 0) and then to 

Path II. From (12m, 0, 0) to (18m, 0,1.8m) and then 

Path 111.  From (12m, 0, 0) to (12m, 0, 1.8m) and then 

Check runs on a digital computer show good agree- 
ment, indicating that the approximations used have 
no significant effect on the results. It follows from 
Equation (13a) that the pitch amplitude is 0.007 of 
the roll amplitude. This too is in agreement with the 
computer results. The steady-state pitch deflection 
can be determined from Equation (E) of the Appen- 
dix, where the orientation of the principal axes of 
the space station relative to the body-fixed axes is 
described. 

(18m, 0, 1.8m) 

to (18m, 0, 1.8m) 

to (18m, 0,.1.8m) 

PATH I 

B. Effects of Astronauts' Motion 

The walking speed was assumed to be 0.9 m/sec. 
To simulate changes in velocity realistically, a first- 
order lag with a time constant of one second was 
added to the velocity term. 

Motion in the yz plane, for example the motion 
of three astronauts from (18m, 0, 0)  to (18m, 1.2m, 
1.2m), changes the direction of the principal axes 7,  

relative to the body axes and causes a roll oscilla- 
tion, but the deflection in this case is only 2'. If this 
transfer occurs in two phases, for example from (18m, 
0,O) to (18m, 0,1.2m) and then to (18m,1.2m, 1.2m), 
a small initial roll velocity (f 2.5 . rad/sec) is 
introduced in the second phase. The same two-phase 
transfer in a different sequence, i.e., from (18m, 0, 
0) to (18m, 1.2m, 0) and then to (18m, 1.2m, 1.2114, 
produces a small initial roll velocity of the opposite 
sign. 

Because starting and stopping occur in time inter- 
vals that are small compared with the period of the 
oscillation, the effect of these on the roll amplitude 
can be neglected (Figure 7a-c). 
PATH I I  PATH I l l  

300 320 . 340 360 380 400 

TIME (sec) -+ 
Figure 6 -  Response of Station to Motion in Unison of Three Astronauts from (12m, 0, 0) to 18m, 0, 1.8m) along Three 

Different Paths. (Note 100-to-One Scale Change in 9 between Path I and Paths I I  and 111.) 
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j Iz= 6,000,000 kg m* 
' I,= 112,000 kg mL lf- 

SPACE 
STAT ION 

I l l 1  
I 1  

100 200 300 400 500 600 700 800 900 1000 2000 3000 4000 5000 6000 7000 

TIME (sec) -+ 

a b c  d e f g h i 

Figure 7 - Response of Station to Motion in Unison of Three Astronauts (a-c) in y z  Plane 
( x  = 18m), (c, d) in x y  Plane (z = 01, (e-@ Parallel to but Not Along x Axis, (h, i) 
in Circle in yz Plane ( x  = 15m) 

Motion in the xy plane (z=O) causes no roll, as 
can be seen in Figure 7c, d. The ladder for going from 
a lower to an upper deck of the space station should 
therefore be located in the xy plane (z=O). 

Motion parallel to, but not along, the x-axis (con- 
stant z # 0) introduces large roll disturbances, mainly 
because of the change in angular momentum with 
distance from the center of rotation. The transfer of 
this momentum to the roll axis depends only on 
z, i.e., the torque generated by the Coriolis force 
(Figure 7e-g). 

Walking in a circle in the yz plane (Figure 7h, i) 
introduces two disturbances: the attitude of the prin- 
cipal axes relative to the body axes is varied, and an 
angular roll impulse is introduced. The first disturb: 
ance has a period corresponding to the time i t  takes 
to walk around half the circumference of the cylin- 

drical station. Its effect can be seen in 4. The second 
disturbance is  the reaction of the station to the ini- 
tiation of circular motion by the astronauts. The 
initial roll velocity that results is given by 

I&o=mp*v= 270kg * 1.8m . 0.9 m/sec 

The amplitude of the resultant roll (T= the period 
of the roll motion) is 

All these disturbances are moderate. The roll 
angle never exceeds I O 0 .  However, whether the roll 
of the space station i s  increased or decreased 
depends on the phase of the recurrence of a 
disturbance. 
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Figure 8 - Effect of One Astronaut Moving in x Direction Synchronously with Roll: (a) Check 
Run, Repeat of Figure 6, (b) Roll Unaffected by Motion in x y  Plane (z = 0). (c) Damp- 
ing of roll (z > 0), (d) Augmentation of Roll (z < 0), (e, f) Roll Unaffected by Motion 
in Phase with 6 

Figure 8 shows the effect of one astronaut moving 
in the x direction synchronously with a roll oscilla- 
tion. Whether the effect is one of buildup or of de- 
cay depends on the phase relation. Hence it should 
be feasible to use the astronauts for corrective action 
to counteract roll of the space station. Figure 8b 
shows again (as did Figure 7c, d) that motion in the 
xy plane (z=O) does not affect roll. Figure 8c shows 
a damping effect (z > 0) ;  Figure 8d shows an aug- 
mentation (z < 0) for motion in the x direction in 
phase with +; Figure 8e, f shows that motion in the 
x direction in phase with 4 has no effect. 

A more effective and convenient way to reduce a 
roll oscillation is  shown on Figure 9. Here the motion 
is  parallel to, but not along, the y-axis (constant z # 0)  
or parallel to, but not along, the z-axis (constant 
y#O) in phase with the roll velocity.* The same mo- 
tion in the opposite phase causes a buildup. 

Very little has to be added to the basic analog 
program to simulate motion of an astronaut syn- 
chronized with a roll oscillation of the station. The 
additions to the basic program are shown on Figure 
10. With Integrator 8 (Figure I O )  providing an adjust- 
able first-order time lag, Amplifier 9 generates the 
sign of 4 or, with SI closed, the sign of p .  The bridge 
limiter inserts a threshold, so that corrective action 
is taken by the astronaut only if roll exceeds a certain 
limit. The i,,, ic, and i,,, commands are connected to 
their integrators over a pair of relay switches that 
keep the resultant motion within preset limits: For 
example, the astronaut cannot move beyond the wall 
of the mace station, i. e., y and z must always be less 
than 1.8m. 

*Measured as 6, i .  e., as the gimbal rate of the inertial platform, or 
as p by a rate gyro mounted on the frame of the space station 
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Figure 9 - Correction of Initial Roll Disturbance by Controlled Motion of One Astronaut 
in yz Plane 
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Figure 10- Computer Program: Motion of Astronaut Synchronized with Roll Oscillation of Station 



C .  Automatic Control of Station's Roll Motion 
As already mentioned, properly controlled varia- 

tions in flywheel rates could be used to damp out 
roll oscillations. We shall first consider the effect of 
a flywheel with its axis parallel to the x-axis. 

For simplicity, we assume that I,,, I , ,  I,,=O and 
that the astronauts are not moving. The station has 
a roll oscillation introduced by some previous dis- 
turbance. We use small angle approximations and 
Equation (19) becomes, with I ,  - I,= AI and I ,  > > 
n I /  

- H e  = h,+ PI,  p = $ - $ e  

H 4  = ql, q = b + ? k J  
H = rl, r z t j  

'X 

This equation shows that-only a rate of the angular 
impulse of the flywheel, h,, generates a torque. Thus 
if 6, can be varied synchronously with 6, the roll 
oscillation of the station can be damped. But 6, can- 
not be used to counteract a steady-state deflection 
in (b caused by luz. However, as Figure 7a shows, the 
largest possible steady-state deflection due to I,, i s  
only 2 O .  

I . . .  _.__ .. 

. . . . .  ... . ,  , . .  4 . . .  . . . . .  
t25 io3 

1 . .  . . ,  
. .  

. . .  I .  . .  
. .  . .  

- * . .  .:.. 
111s 

. ,  . .  . .  . . , _  ' , . . .  . .  . . . . .  . . .  . .  . .  . .  . . . . .  -. , . . , _ .  
, . ? * . , . l  . 

, . , ,  I .  . .  

. . . .  . . . .  
. .  . . ( 1  

6' (rad) 

9 (rad) 

. -  3 

- 2 5 4  

I I U  I 

I -200 4 
i i i i i i i i i i i  

100 200 300 400 500 600 7 0 0  800 900 1000 1100 I200 1300 1400 1500 1600 1700 

TIME (SEC) + 
Figure 11 -Correction of Initial Roll Disturbance by Flywheel Control System 
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Figure 12 -Computer Program: Synchronous Motion of Flywheel for Automatic Roll Control 

Another possibility is to use a flywheel with’ its 
axis parallel to the y-axis. Using the same approxi- 
mations, we get 

(22) 

We now get a damped roll oscillation if  the angular 
impulse of the flywheel, h,, i s  varied synchronously 
with -6. Comparing Equations (21) and (221, we 
can see that for an equal damping effect 

rh,=h, 
An effective schedule for h was found to be a 

linear increase with time followed by an instanta- 
veous braking action (Figure 11). For this schedule 
h, i s  related to hSmax as follows (T= the roll period): 

* T  - hXman,,-hh,. -=19h,=Ig. 2 0.628h umar 

= 

Control by varying h, thus turns out to be consid- 
erably more effective. 

The additions to the basic analog program to simu- 
late such a control system are shown on Figure 12. 
The discharge of Integrator 3 (Figure 12) through the 
two relay switches occurs in the intervals when the 
angular impulse of the flywheel, h, on Figure 12, 
approaches zero (adjusted by potentiometers 51 
and 52). 

The performance of the flywheel control system 
is illustrated in Figure 11. No phase adjustments were 
made to optimize the control. 

The simulation assumes that the flywheel* is driven 
by a motor with a.combined time constant of 10 sec- 
onds. (Therefore h, does not remain constant, as was 
assumed above, but decays during the cycle.) The 
voltage applied to the motor is  constant; only the 
polarity is controlled. Brakes are applied before the 
voltage is reversed. Thus 

€= const. sign 4 = c * h, 

h =  h, 
1 +I05 

The maximum required power, P, i s  half the maxi- 
mum torque multiplied by half the maximum angular 
rate, i .  e., 

With I,=2kgm2 and h,=100 Ib ft sec-’ 
=130kg m2 sec-*, we get 

1 130 130 
4 10 2 

p,,,= - __ . - 

=211 watts 

The maximum angular rate is  therefore 

130 
2 

=620 rpm 

w = __ = 65 rad/sec 

*A hydraulic system with circulating pump and valves could well 
be another feasible solution to the control system problem. 
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Or, rather than building up an angular impulse 
and then wasting the stored energy by braking, we 
can use a gimbal-mounted gyro with its axis aligned 
initially with the z-axis (Figure 13). The required 
angular impulse, h,, is  generated by rotating the gim- 
bal (its axis i s  parallel to the x-axis) through an 
angle 6: 

h,=-l,08sin S 

( I ,  *a, i s  the angular impulse of the spinning gyro.) 

Figure 13 -Stabilization by a Gyro 

The other two components of the angular impulse 
generated by this rotation are 

h,=I,, 

h, = I ,  0, COS 6. 

is  the combined moment of inertia of the gim- 
bal and the flywheel around the x-axis.) Because it 
it small, the influence of these other two components 
on the motion of the station can be neglected. 

The torque generated by turning the gimbal is 

L = K + a X h  
= [ iG,  X + /,a,(q cos s + r sin S)I . i 
- [ / ,~ , i  cos s + p/,a2, cos s + r / G , . j ~  . j 
- sin 6 + p/,a, sin 6 + q / G , x i ]  * k 

The j and k components of L, along with the centrifu- 
gal forces, constitute the load on the gimbal-and 
spin - bearings. Sufficient power must be provided 
to replace the energy dissipated by friction. 

Because the station i s  rotating, L,#O. Power is 
therefore required to turn the gimbal: 

P = L , * S  

This power builds up potential energy: 

6 = 0  0 

(q is  neglected as small) or, considering r to be in- 
dependent of 6: 

E z I ,  * a,r(l - cos 6) 

7r and for S=-, 
2 

E z 82 watt sec 

This energy has only to be built up. As soon as the 
torque is removed, the gimbal swings back to the 
opposite deflection. 

I t  may be advantageous to use moderate rates of 
rotation of the gyro. The stored kinetic energy would 
thus be small, allowing the control to be switched 
on and the gyro to be started as required. The stored 
kinetic energy for an angular impulse, I; a,, of 
130kg m2 sec-' is, given that I,=2kg m2, 

I 

E= 4250 watt sec 

SECTION IV. EFFECT OF EXTERNAL TORQUES 

Still to be mentioned are the effects of external 
torques. These have not been considered in our 
analyses mainly because external torques in space 
are small (gravity gradient, magnetic fields, radiation 
pressure, drag). They therefore change the angular 
impulse only very slowly: 

dH L=- 
dT 

The same can be said of the impact of meteoroids. 
Roll motion resulting from such impacts can be 
damped out as it occurs and the axis of rotation will 
be in line with the direction of the angular impulse. 

Finally, it may occasionally be necessary to use jets 
to restore and maintain the desired rate of rotation 
and the direction in space of the axis of rotation. 

SECTION V. CONCLUSIONS 

Mass motion in a rotating space station of cylindrical 
shape causes the station to oscillate in the roll direc- 
tion. The more nearly symmetrical the station is 
around its length axis, the larger the amplitude of 
the roll oscillation wil l be. But, as is  shown in the 
example investigated, a difference even as small as 
0 .2O/o  between the moments of inertia of the major 
and the intermediate axes suffices to keep the oscil- 
lation small. In addition, excessive roll can be re- 
duced by control systems using a flywheel or correc- 
tive motion of the astronauts. 
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- 
H= 

Because a x b_ has the direction of the &axis, its com- 
ponent i.ZXb is proportional to cos y cos /3 and its 
component i.ZxG is  proportional to sin y cos p. We 
determine for the &axis (selecting the smallest 7) 
from 

iaxg - sin . Y COSP ~- =tan y= I ,?. (I, - - I<) + I,* * I,, ~- 
iZX6 - cos y cos p ' U Z ~ X U  + L ( l ,  - I&) 

(D) 
We determine p from - 

1, -1xv -1, 
-1 xu I, -Ivz . a (A) 

-1, -I#, 1, 

- 

-- - __ tan p (E) kZi)<b-  - sinp  
iZX6 - cos y cos p cos y 

- - (12 -4) (!u.:!c) :!=;. . 

lw + IzzClu - I&) 

To determine a, we rewrite Equations (2) using 
A, = 17, 

( I x -  I7)p-Ix,q-lXzr=O=Fn - -  
-/x,,p+(/,-/,,)q -l,,r=O=d~~ 

- 

and we use the relationship 

cos y jFX7 ~- -sin y tan ,B + -~- tan  LY W) 
kFxa - cos p 

Because /3, y are small, 
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